Go to Top Go to Bottom
Anim Biosci > Accepted Articles
https://doi.org/10.5713/ab.23.0516    [Accepted] Published online May 7, 2024.
Effects of winged bean tuber (WBT) modified starches substituted for cassava chip in concentrate diets on rumen fermentation, nutrient utilization, and blood metabolites in Thai native beef cattle
์Narirat Unnawong1  , Anusorn Cherdthong1,*  , Chaichana Suriyapha1  , Sompong Chankaew2  , Teppratan Rakvong2 
1Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
2Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
Correspondence:  Anusorn Cherdthong, Tel: +66-43202362, Fax: +66-43202362, Email: anusornc@kku.ac.th
Received: 9 December 2023   • Revised: 28 February 2024   • Accepted: 11 April 2024
Abstract
Objective
This study examined the effects of substituting winged bean tuber steam (WBTS) modified starches for cassava chips (CSC) in the concentrate diet on rumen fermentation, nutrient utilization, and blood metabolites in Thai-native beef cattle.
Methods
Four Thai-native bulls were assigned randomly as a 4 × 4 Latin square design, which represents the amount of CSC replaced with WBTS in the concentrate mixture diets at 0, 10, 20, and 30%.
Results
Increasing levels of WBTS replacement for CSC in the concentrate diets had a quadratic effect on total dry matter (DM) intake (p<0.05). Replacement of WBTS at 20% and 30% for CSC did not alter total DM intake compared to 0% WBTS, whereas 10% WBTS replacement could significantly increase total DM intake by 0.41 kg DM/day compared to the control group. In addition, neutral detergent fiber (NDF) digestibility showed a quadratic increase (p < 0.05) when CSC was substituted at various levels of WBTS in the concentrate diet (p < 0.05). Replacement of CSC with WBTS at 10% and 20% showed higher NDF digestibility when compared to 0% replacement. There was a quadratic increase in blood glucose at 4 h post-feeding, and the average blood glucose value was significantly lower (p < 0.01) when substituting CSC with WBTS. Substituting WBTS for CSC at 10% in the concentrate diet showed the highest blood glucose concentration when compared to other treatments. Replacing CSC with WBTS at 10% and 20% shows a higher concentration of C3 than those of other treatments (0% or 30%). The nitrogen (N) intake (NI) increased linearly (p<0.05) when substituting WBTS for CSC at all levels in the diet. Additionally, N retention (NR) and the ratio of N retention to N intake increased (p<0.05) when substituting WBTS for CSC at 10%, 20%, and 30% compared to 0%. The gross energy intake (GEI), digestible energy intake (DEI), and energy efficiency (DEI/GEI) were quadratically increased when substituted with various levels of WBTS for CSC in the concentrate diet.
Conclusion
The findings indicate that substituting 10% of CSC in the concentrate diet with WBTS may be sufficient as an alternative feed resource for improving nutrient utilization and metabolic efficiency in beef cattle diets.
Keywords: Alternative Energy; Modified Starch; Physical Treated; Ruminant; Winged Bean


Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : editor@animbiosci.org               

Copyright © 2024 by Asian-Australasian Association of Animal Production Societies.

Developed in M2PI

Close layer
prev next